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“Relax, it’s a dessert 
topping AND a floor wax”

-Chevy Chase alluding to reconfigurable computing, circa 1978
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Agenda

• Overview

• Intro to Reconfigurable Computing

• Using Reconfigurability

• Design Examples



R. Andraka 23 April 974

Overview

• Custom hardware performance

– 10-1000x advantage over microprocessor

• Microprocessor Flexibility

– Function changed by reconfiguration

• Cost Competitive 

– On par with DSP microprocessor system
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Introduction to 
Reconfigurable Computing

John Watson,
Xilinx



Reconfigurable Logic

Reconfigurable Processing

April 1997
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• Get more done faster... cheaper... 
in less space... 
and with less power.

Electronics’s Golden Rule
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Living Under Moore’s Law

1975 Silicon learning curve

Density / $

Time
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Tornado Forces in the Electronic 
Market

Market change is accelerating
Shrinking product life cycles / TTM / TTV

Products are becoming global 
Worldwide competition
Increased complexities / cost of errors
Standards evolving & are replaced

Electronic information in vogue - Internet
Homogeneous customer
Lower cost of sales

Markets becoming consumer oriented
Entertainment value / Mobility / Price driven perceptions
Hide technology
Provide choices
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Silicon Evolution

TTL

ASIC Micro

ASIC DSP Micro

ASIC
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Silicon Evolution

ASIC DSP Micro

ASIC FPGA DSP Micro

ASIC FPGA RL DSP Micro
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Reconfigurable Logic

Reconfigurable Logic

I/O Retargeting

Gate Reuse

Algorithm Processing

Mem/ logic tradeoff
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Gate Reuse

 Lowers silicon & product costs 
— Opens opportunity to sell future h/w upgrades
— Reduces end-customer fear, “I made wrong choice”

 Provides a bridge between software algorithms and hardware 
implementations

— Reprogrammable Co-processor
— Allows a “custom-fit” of specific logic for a specific application

— Increased performance 
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Evolution of Moore’s Law

 Moore’s Law does not work for cars, drinking glasses, houses...

 Moore’s Law works for silicon because it moves 3 dimensions into 
“micro” dimensions.

Height, width, and depth move away from human terms  
into “micro” terms. 

 But, we live in 4 dimensions...
What happens when time moves from human terms to 
micro terms?
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Silicon Reuse in Time - More’s Law*

1975 Silicon learning curveDensity / $

1995 Real-time reconfiguration 
learning curve

Time

2X

10,000X

* Blatently stolen 
from John Gray -
Xilinx Inc.



R. Andraka 23 April 9716

Evolvable
Systems
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
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Algorithm Performance

 Allows a “custom-fit” of specific logic for a specific application 
— Logic conforms to s/w instead of visa versa
— Increased performance

 Provides a bridge between software algorithms and hardware 
implementations

— Reprogrammable Co-processor
 Data stays resident

— Logic moves throught the device, not the data
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Algorithm Processing

Relative Clock Cycles / function
10001001

A C= A+BB D F= D+EE G= C+FuP

Low-End Audio

Low Cost

A B

D E
G =A+B+D+EPDSP

Mid-Range Video

Performance
Cost still important

RL

High-End Video

A

B

C

D

G =A+B+D+E Performance

Design decision
based on:

GOOD BAD

Applications:
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Reconfigurable Hardware

Word Processor

Fixed h/w

Fixed s/w

GOOD

PC

Fixed h/w

Reconf. s/w

BETTER

Future

Reconf. h/w

Reconf. s/w

BEST

Reconfigurable Logic is the underlying fabric of the future

• Industry talks about physical space (3 dimensions)

• Reconfigurable logic adds the 4th dimension - TIME
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Extending Life Cycles

TTM

Reducing TTM is a traditional use of FPGAs
Extending product life cycles is a Non-traditional use of RL

Gate Reuse can extend product life-cycles - thereby
keeping customers.

Product Life-Cycle
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Lowering The Cost Of High-
Performance

Cost

Performance

uP/PDSP ASIC

FPGA
(slow configuration)

RL
(fast configuration)
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Tornado Forces in the Electronic 
Market

Market change is accelerating
Shrinking product life cycles / TTM / TTV

Products are becoming global         
Worldwide competition
Increased complexities / cost of errors
Standards evolving & are replaced

Electronic information in vogue - Internet
Homogeneous customer
Lower cost of sales

Markets becoming consumer oriented
Entertainment value / Mobility / Price driven perceptions
Hide technology
Provide choices
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= DESIGN FOR CHANGE

= DESIGN FOR USER CUSTOMIZATION

= SELL  OVER THE NET

= DESIGN FOR INSTANT CHOICES
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So, Why isn’t everyone doing this?

 Devices have just become large and fast enough
— 4010/4013’s 
— 20MHz

 Design tools are at the embryo stage
 This takes a thinking “paradigm” shift
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The 3 Stages in a Paradigm Shift

1 - Total rejection of a new idea by entrenched leaders
If this was a good idea, then we’d have thought of it
No market research data needed

2 - When the entrenched leaders can’t ignore it, they’ll do it their way
New idea shoved into old box
Focus stays on improving stage 1 solution, not on the problem
Justifies stage 1 - Market research data/researchers FUD used

3 - New paradigm used to solve the problem in a new way
The new paradigm severely damages the entrenched leaders
Usually a new company that didn’t know better
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Developer’s Program

Segment Applications Benefit

Multimedia Video editing / effects / machine imaging Speed / cost / extensibility

FFT/convolutions/etc

128 track MIDI recording studio Speed / cost / extensibility

Communications ATM /  multi-service / protocols Flexibility / extensibility

Encryption / compression

Embedded Control Industrial, DSP, reconfig computing. Flexibility / cost 

C EC

M
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Reconfigurable Processing Unit

Reconfigurable Logic
I/O Retarget

Gate Reuse

Processing

RPU

RPU’s focus on processing, and gate reuse.

Mem/ logic tradeoff
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The XC6200 is 

the first FPGA architecture

optimized for RPU 

applications.
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Problems Confronting Embedded 
Control Designers Today

CPU

Reconfigurable
Coprocessor

(FPGA)

I/O

I/OMemory

Reconfiguration from external
memory limited to low frequency

High frequency
access to registers
needed

Bus access to large number
of internal registers requires
careful design

Microprocessor interface
consumes resources

Insufficient memory
capacity for coprocessing
algorithms

Partial Reconfiguration
is difficult Closed chip architecture requires

vendor only tool support
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XC6200 System Features Meet
Embedded Coprocessing Requirements

CPU

RPU
XC6200

I/O

I/OMemory

1000x improvement in reconfiguration
time from external memory

FastMAPtm assures 
high speed access to 
all internal registers

All registers accessed via
built-in low-skew
FastMAPtm busses

Microprocessor interface
built-in

High capacity distributed memory
permits allocation of chip
resources to logic or memory

Partial Reconfiguration
fully supported

6200 Solutions for Embedded 
Control Designers 

Open chip architecture allows
tools from any source
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XC6200 Key Features

High-density
memory

Fast configuration
Partial

reconfiguration

Lots of flip-flops

Built-in FastMAP™
processor interface
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Reconfiguration Speed
of Current Technologies

ns us ms s

XC4013

40ns

200us

250ms
XC6216Design Swapping

Block Swapping

Circuit Wiring

Rewiring

Levels of Reconfiguration
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Xilinx XC6200 Family
Changing the Rules of System Design

• Optimized processor interface 
(8, 16, or 32 bit)

• Ultra fast reconfiguration 

• Dynamic, partial chip reconfiguration

• Efficient, symmetric architecture

• open Architecture

• Simple hardware design, faster 
data transfer

• 1000X faster context switching 
(logic and memory 
reconfiguration)

• Modify part of the design without 
processing interruption

• Position independent design 
mapping

• 3rd party tools, own tool 
development

Features Benefits

XC6200 Features & Benefits
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PCI/6200 Board Architecture

Features
– Rapid prototyping system
– Automatically handles all 

architecture details (hides chip 
level interfacesl)

– Enables RL designs
– Sold through 3rd parties

– Will include XC6200 P&R 
software

– Can include other s/w 
modules

– Headers for mezzanine I/O 
cards

– Xilinx will test for compatibility Xilinx
4013E

(PCI Interface)

Xilinx
6216

SRAM

SRAM

SRAM

SRAM

Bank 2

Bank 1

21

21

16

PCI Address

2132

PCI Data

32

16

8

8

D[31:0]

8

A[15:0]

D2[31:0]

A2[15:0]

8

16

16

External Data
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Using Reconfigurability

Ray Andraka,
the Andraka Consulting Group
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Reconfigurable Systems

• SRAM FPGA for 
configurable logic

• Mechanism for loading 
configuration programs

• Storage for configuration 
programs

• I/O
• Optionally may include

– Extra memory
– Host processor

Configurable
Logic
Array

Configuration
Program
Storage

Configuration
Controller

I/O

Bulk Memory
(optional)

Host
(optional)
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Configurable Logic

• Consists of one or more SRAM based FPGAs

• May also have programmable interconnect
– Bus switches
– Tri-state logic
– Multiplexers
– Crossbar switches
– Field Programmable InterConnect (FPIC)
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SRAM Based FPGA
• Infinitely reprogrammable

• Logic & connections set by 
underlying registers

• Rewriting configuration 
registers changes function

• Desirable features:
– partial reconfiguration
– reduced configuration time
– state preservation
– random config register 

access

Logic
Cells

Interconnect
switches

Configuration
Registers
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Reconfiguration Mechanism

• Transfers bitstream from storage to configuration 
registers

• Sequences configuration controls on FPGA

• Needs to select among multiple configurations

• Should detect and recover from errors

• Triggered by FPGA, host, or external stimulus
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Reconfiguration Controller

• Follow published sequence and timing exactly

• Host microprocessor may serve as controller
– Local controller eases burden on host

• Simple controller built-in on most FPGAs

• Multiple configurations require external logic

• External controller often faster
– Not part of reconfigured logic
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Configuration Storage

• Bulk memory holds configurations
• May be stored on host processor
• Local storage for faster reconfiguration

– Byte wide for easy paging
• Multiple configurations require pointer

– SRAM for security or frequent modification
• must be initialized

– EEPROM for non-volatility
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Bulk Memory

• Often needed in DSP systems

• Data buffering

• Look-up tables

• Function Generation

• Size, type & speed application dependent
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Configuration Classification

• Fixed function
– product update 
– one-time customization

• Static configuration
– Select configuration at system initialization
– Multi-mode systems

• Dynamic configuration
– Configuration changed as part of process
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Dynamic Configuration Types

• Full or partial

– Active logic during reconfiguration

• Compile-time or run-time

– Configuration sequencing

• Rigid, adaptive or evolutionary

– Configuration program alterations 
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Partial Reconfiguration

• Some of logic remains active
• Transients caused by reconfiguration

– Ignore inputs from reconfiguring logic
– Force newly reconfigured logic to known state

• Special consideration to preserve state of flops
• Signal contention a possibility
• Full reconfiguration avoids issues
• Partial can be chip or system level
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Run-Time Reconfiguration

• Sequence of configurations affected by process
– Compile-time uses fixed sequence

• Pointer to next configuration program

• Controller must have hooks to obtain pointer



R. Andraka 23 April 9747

Adaptive Configuration

• Modifies explicit parameters in next configuration
– Normally to change coefficients
– Logic alterations if no routing changes

• Requires knowledge of bitstream format
– Find by differences in bitstreams
– Formats from vendor in some cases

• May require recomputing error check codes

• Potential for bitstream corruption
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Evolutionary Configuration

• Next bitstream generated by genetic evolution 
• Requires intimate knowledge of bitstream format
• Rules required for mutation
• Extensive bounds checking required

– Illegal configurations
– Signal contention
– Floating inputs

• Not all devices suitable
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Design Process
• Partition algorithm into 

time slices and devices

• Identify resource for each 
configuration
– FPGA
– Memory
– Interconnect

• Derive minimum common 
architecture

• Design configurations to 
architecture Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Identify Algorithm

• Develop block diagrams
• Identify parameters

– data rates
– precision
– data flow
– functions
– storage

Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Tailor to FPGA

Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map

• Eliminate multipliers where 
possible

• Distributed arithmetic

• Bit / radix serial arithmetic

• Alternate approaches or 
approximations

• One-hot state machines

• High performance design
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Partition by Time Slice

• Account for 
reconfiguration time

• Preserve data during 
reconfiguration

• Examine all configuration 
combinations for partial

• May not be practical

Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Partition & Mapping

• FPGA family, size, 
quantity, and speed

• Memory size, type, speed 
and location

• Interconnect

• Group common functions

• Partial configuration 
requires greater detail Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Partitioning & Mapping Tips

• DSP functions found in app-notes
• Don’t overpack FPGA

– Leave room for floorplanning, routing and 
changes

• Consider pin counts
• Group logic common to several configurations
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Distill to Common Architecture

• Architecture
– FPGA type and quantity
– Interconnect pattern
– Memory 

• Re-map (or modify) 
configurations 

• Exploit similarities
– function
– memory location, size
– interconnect

• Iterative process Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Distillation Tips

• Bus switches or FPIC for interconnect conflicts
• Seek symmetry in the design

– helps for new applications
– same memory connections for each FPGA
– symmetric interconnect

• Use extra bulk memory for function generation
• Daughtercard for special I/O circuits
• Set parameters through reconfiguration
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Define Architecture

• FPGA type, size, quantity

• Interconnect scheme

• Memory size & distribution

• I/O and host interfaces

• Support circuitry
– config controller
– clocks and resets

• Generalize architecture
Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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Design FPGA Logic

• High performance 

techniques

• Pin-locked

• Partial reconfiguration 

requires floorplanning

Design FPGAs

Define Architecture

Partition & map

Distill

Tailor to FPGA

Partition & map

Partition by time slice

Identify algorithm

Partition & map
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High Performance Design 
Techniques

• Tailor design to device

• Handcraft where necessary
– performance critical logic
– density critical areas

• Floorplan design

• Set timing constraints

• Avoid HDLs
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High Performance Design 
Techniques

• Use Level Compression

• Pipeline design

• Duplicate logic

– reduce fan outs

– eliminate extra interconnect

• Minimize internal tri-state use
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Configuration Controller

• Use published configuration sequence & timing

• Need to select among multiple programs

• Detect & recover from errors

• Allow for remote configuration

• Daisy-chain not always practical

• Dedicated controller & storage preferred

• Isolate configuration path for partial 
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Configuration Storage

• Size depends on number of configurations
• Byte wide memory easier for multiple programs

– uses more FPGA pins
• SRAM or EEPROM

– adaptive and evolutionary need SRAM
– Design security may demand SRAM
– SRAM needs to be initialized
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Pin Assignment

• Must be consistent across all configurations
• Be aware of dual function pins 
• Follow data path flows

– busses on same sides of chip
• Correlate pins to row and column on FPGA
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Debug

• Hooks to monitor configuration (via host) 

• Design in host/debug port access to all FPGAs

• Access to clock, special signals

• Use reconfiguration in debug

• Include remote configuration capability
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Clocking

• Number and frequencies of clocks
• 2x data rate clock handy
• Bit serial clocks at 100MHz and beyond
• Consider PLL 

– Frequency synthesis
– External clock duplication

• Clock skew between FPGAs
• Signal quality 



R. Andraka 23 April 9766

Power Dissipation

• > 50 % of nodes switching in pipelined DSP

• High clock frequencies

• Device dissipation can easily exceed 5W

• Problem worse in bit serial designs 

• Thermal management is a must
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Reconfiguration for DSP

• High data rates limit reconfiguration opportunity
– Relatively slow configuration expensive
– Improved by partial reconfiguration
– improved by reduced configuration times

• Typically a reconfigurable logic coprocessor
– Load custom process unique to application
– Reload with new coprocessor when done

• Semi-static or full reconfiguration
• Reconfiguration requires breaks in datastream
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Example: 
Universal Smartcard Controller

• Run-time, full, rigid configuration

• Start with detect logic

• Detect Smartcard

• Reconfigure with optimal 
interface

• Access card

• Reconfigure with detect logic 
upon withdrawal

• Keypad scan in all 
configurations

XC3030

Config
EEPROM PLD

Smart Card
Connector

modified
I2C

Keypad

3 bit select
& trigger
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Example:
Video Processing Platform

• Dynamic compile-time partial configuration
– partial configuration reduces overhead

• Use an existing platform plus daughtercard
– Minimal hardware on daughtercard

• Reconfigure during frame retrace time

• Common functions remain

• Overlays replaced to change process
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FCMfun Board Architecture

Clay31

Clay31 Clay31

Clay31 Clay31

16

32

128K x 8  
Configuration 

Memory

128K x 32  
Data    

Memory

A ADD

16

17

ISA 
Buss

Expansion 
connector

Courtesy of  National Semiconductor Corp.

MCM
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Dynamic Hardware Video System

A

ADC

Application
raster

process

VRAM
512 x 1024 x 16

Video
timing &

sync
extraction

Application
data path & control

DM SRAM
128k x 32

Program
Interface

16 bit ISA
host

interface

Pixel clock
generator

24 16

VRAM
512 x 1024 x 16

Daughtercard

16 16

VRAM
controller

VRAM
controller

Dual
address

generators

Video
Output

FCMCM

address
generator &
bus arbiter

CM
config memory 32

R

Data path
registers & selectors

CLAy 31

RGB
camera

input

Buss Interface

Video
Output

ISA
Interface

• FCMCM dynamic
– Video timing
– Memory controllers
– Process overlay

• CLAy31 static
– ISA interface
– Config controller

• Reconfigure FCMCM 
during frame retrace
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FCM Floorplan

VRAM data

VRAM data

V
R
A
M

A
d
d
r
/
c
t
r
l

V
R
A
M

A
d
d
r
/
c
t
r
l

Video Timing

DM
addr
gen

Programming

Basic
controls

Tile ATile B

Tile C Tile D

application
overlay

datapath

application
overlay

datapath

application
overlay
raster

process

application
overlay
control
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Example: 
Radar Target Generator

• Full compile-time rigid configuration
• Platform has 4 required configurations:

– Chirp/CW target generator
– Impulse target generator
– Sea Clutter generator
– Transponder (IFF) response generator
– Tables loaded by extra configurations

• Future applications expected 
• 40 MHz data
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Chirp Target Generator

Host
Interface

8

I

mag

Target Sort
by Range

I

From Sea-Clutter /
Noise Module

Digital
Sinusoid

Generator

Target
descriptors

phase Digital
Sinusoid

Generator

I

Q

Q

phase

mag

chirp slope

12

12

8 8

Output
Format

&
Buffer

Vector
Magnitude

IQ

8

8

12

16

12

16

12 8 Q

Input
Buffer

start

length

freq

mag
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Tailored Target Sort

Range
counter
(16 bits)

Tag RAM
32k x 8

Register File

100 x 39

15

Tag RAM
32k x 8

16

A AD D

A

DI DO

PRI start range,
offset and length

Target
Descriptors

7 bit
counter

12 bit
Magnitude

Register

9 bit
length
counter

coef or
 Phase
Register

12 bit
Magnitude

Register

9 bit
length
counter

coef or
 Phase
Register

Target latch 1

Tag RAM
32k x 8

Register File

100 x 39

15

Tag RAM
32k x 8

A AD D

A

DI DO

Target latch 2
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Sinusoid Generator

phase
phase

accumulator
chirp slope
integrator

chirp slope

1st
quadrant

Sine
LUT

phase[13:0]

phase[14]

I

Q

phase[15]

Mag

phase
1st

quadrant
Sine
LUT
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Tailored Sinusoid Generator

• Smaller than multiplier

• 20% of XC4013E

• 50+ MHz data 

phase
phase

accumulator
chirp slope
integrator

chirp slope
5 iteration
CORDIC
Polar to

Cartesian
Conversion

I

Q
Mag

phase
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Chirp Target Partitioning
32kx16 32kx16 64kx16 64kx16

Host
Interface

8

I

mag

Target Sort
by Range

I

From Sea-Clutter /
Noise Module

Digital
Sinusoid

Generator

Target
descriptors

phase Digital
Sinusoid

Generator

I

Q

Q

phase

mag

chirp slope

12

8 8

Output
Format

&
Buffer

Vector
Magnitude

IQ

8

8

12

16

12

16

12 8 Q

Input
Buffer

start

length

freq

mag

12

12

12

12

12

12 12
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Impulse Target Generator

Host
Interface

8

mag

Target Sort
by Range

I

From Sea-Clutter /
Noise Module

FIR Filter
8 Taps

15 Coef sets

Target
descriptors

FIR Filter
8 Taps

15 Coef sets

Coef select

mag

12

12

8 8

Output
Format

&
Buffer

Vector
Magnitude

IQ

8

8

12

16

12

16

12 8 Q

Input
Buffer

start

length

coef

mag

Coef select
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Tailored FIR Filter

      

LUT
address
encode

12

Mag

Coef select

9x16
LUT

4

9

4

9

Reg

4

9

Reg

4

9

Reg

4

9

Reg

4

9

Reg

4

9

Reg

4

9

Reg 12

C0C1C2C3C4C5C6C7

Filler pulse
Enable

12

9x16
LUT

9x16
LUT

9x16
LUT

9x16
LUT

9x16
LUT

9x16
LUT

9x16
LUT
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Host
Interface

8

mag

Target Sort
by Range

I

From Sea-Clutter /
Noise Module

FIR Filter
8 Taps

15 Coef sets

Target
descriptors

coef select

mag

12

8 8

Output
Format

&
Buffer

Vector
Magnitude

IQ

8

8

12

4

12

4

12 8 Q

Input
Buffer

start

length

coef

mag

12

12

12

12

FIR Filter
8 Taps

15 Coef sets

32kx16 32kx16 64kx16 64kx16

Impulse Target Partitioning
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Sea Clutter Generator

Uniform
Random
Number

Generator

Uniform
Random
Number

Generator

Magnitude
Compare

Table
decompress

Gamma
cdf lookup

table
16K x 32

Binary
search
engine

7

32

32

Gamma Distributed Random
Number Generator

7

7
7

Shape
Factor
lookup

64K x 7

Magnitude
Modulation

Profile
64K x 7

16

Random range
address

Sea
Profile
write

controller

7

Host interface

7

Sea Profile RAM
(dual port 64Kx8)

D

A

D

A

Range
counter

 Noise
Profile
 RAM

Root
sum of
squares

LUT

Gaussian
Noise

Generator

8

8

8 8
8

I

Q

 reset
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Sea Clutter Partitioning
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Minimum Common Architecture
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Enhanced Architecture

RAM
(64Kx16)

Target Sort

Gamma RV

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

NCO/FIR

Sea State

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

Host
Interface

30 3030

16

NCO/FIR

Gauss RVs

Mag & Buffer

RSS & mults

RAM
(64Kx16)

1616

RAM
(64Kx16)

1616

161616

3232 32 32

30

32

30

32



R. Andraka 23 April 9786

Example:
Doppler Radar Processor

• Use existing platform architecture
• 2.5 MHz decimated data rate
• Daughtercard for special I/O (ADC’s)
• Reconfigure for:

– Receiver response (filter) changes
– Mode changes (pulse position, pairing, 

calibration)
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Doppler Pulse Pair Processor
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Digital Tuner in FPGA
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Doppler Pulse Pair Mapping
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Another Solution:
Temporal multiplexing

• Single chip time multiplexed
• 100 ms between pulse groups
• 42 ms reconfiguration time
• 1st configuration is demodulator

– collect 5 pulses (1K samples each)
• 2nd configuration is correlator & averaging

– process 5 pulses & repeat for next group
• 3rd configuration for data read
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Digital Demodulator
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Correlator Time Slice

H Autocorr

Crosscorr I

Crosscorr Q

HQ

14 bit data

V Autocorr

29 bit data28 bit data

32 bit data

VQ

I

Q

I+1

Q+1

VI

HI

16K x 16

64K x 16

Parallel to 
Serial 
Shift 
registers



R. Andraka 23 April 9793

Summary

• Performance of dedicated hardware
– 10x to 1000x faster then Microprocessor

• Flexibility of Microprocessor
– Process changed by reconfiguring

• Cost on par with DSP microprocessor systems

• Design flow similar to typical FPGA
– Partition for time slices
– Common architecture distillation or fitting
– pin locked across all configurations
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FPGAs are more than just 
PALs


